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Abstract The relative number of sunspots represents the longest evidence de-
scribing the level of solar activity. As such, its use goes beyond solar physics, e.g.
towards climate research. The construction of a single representative series is a
delicate task which involves a combination of observation of many observers. We
propose a new iterative algorithm that allows to construct a target series of rel-
ative sunspot number of a hypothetical stable observer by optimally combining
series obtained by many observers. We show that our methodology provides us
with results that are comparable with recent reconstructions of both sunspot
number and group number. Furthermore, the methodology accounts for the
possible non-solar changes of observers’ time series such as gradually changing
observing conditions or slow change in the observers vision. It also provides
us with reconstruction uncertainties. We apply the methodology to a limited
sample of observations by ČESLOPOL network and discuss its properties and
limitations.

Keywords: Solar Cycle, Observations; Sunspots, Statistics

1. Introduction

“Counting of sunspots”, usually accompanied with the drawing of the pho-
tosphere, belongs to the most archaic methods used in nowadays’s research.
Yet, this longest-lasting “measurement” provided the mankind with important

B M. Švanda
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Švanda et al.

discoveries about our star. The discovery of 11-year (Schwabe, 1844) and other
cycles (see a review by Hathaway, 2010) belongs to within the most widely
known. Several “by-products” also need to be mentioned here. Let us mention
e.g. the discovery of solar rotation itself (noted already by Galileo Galilei),
learning that the Sun does not rotate like a solid body but reveals a differential
rotation (Scheiner, 1630; Carrington, 1860), or the discovery of some of the
empirical laws of solar activity, such as the Spörer’s law (Carrington, 1858;
Spörer, 1880).

The counts of sunspots are the only direct records at our disposal to retrace
the long-term changes in the solar cycle. The overall level of solar activity is
closely related to the solar forcing acting on Earth’s climate (see e.g. reviews by
Solanki, Krivova, and Haigh, 2013; Connolly et al., 2021). Therefore, numbers of
sunspots and their evolution in time consist a material that is used far beyond
solar-physics applications.

A systematic approach was founded by Wolf (1851), who started to record
daily observations of the Sun at Zürich observatory, he later extended his records
towards previous years (Wolf, 1861). It was known by that time that sunspots
usually do not appear in the photosphere of the Sun isolated and form nests,
the groups of sunspots. The discussion on whether it is the count of groups
or the count of individual spots which is more important to assess the level of
solar activity was worked around by Wolf, who introduced his “relative number
of sunspots” R by combining the counts of both quantities into one index. He
weighted the number of groups ten times more as compared to the total number
of sunspots, as he realised that it is easier for observers to identify sunspots
groups. The weighting by a factor of 10 stemmed from the fact that according
to his observations, there were on average about 10 sunspots in one group.

Wolf’s goal was to have daily observations of the Sun, which was of course
virtually impossible for a single observer at a single station. Hence Wolf already
established a network of auxiliary observers, where he took their observations
when his own were unavailable. In order to do so, he introduced a multiplicative
coefficient k that linked his observations to records of other observers so that the
magnitudes of the relative numbers matched. This practice continued for years,
where the procedure was such that there always was a primary observer and
the observations of secondary or even tertiary observers were considered only
when the primary observations were missing. The chain of primary observers is
the origin of the backbone method (Svalgaard and Schatten, 2016) of combining
records of observers together into one composite, which today is used primarily
when working with historical data.

In the modern era the abundance of the available observers is much larger,
the composite may then be formed using completely different methods, usually
based on some sort of averaging. For instance, the International Sunspot Number
is derived from a network of stations worldwide using the following two-step
algorithm (see Clette et al., 2007; Mathieu et al., 2019).

In the first step, the personal conversions coefficients k are computed with
respect to the records obtained at the Locarno pilot station. This is to assure
the continuity, because Locarno observing station was used both in Zürich and
Brussels era (the transition occurred in 1981). For each station, the observations
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on days when the daily k coefficient deviates by more than 2σ from the monthly
mean are considered outliers and rejected. This is repeated iteratively until the
k coefficients lie within the chosen statistical bounds from their monthly means.

In the second step, the transformed R value is computed for each station using
the k coefficient determined in the first step and for each day, the network average
and its standard deviation is determined. The daily average is compared to the
Locarno reference. Should the difference between Locarno pilot value and the
network average exceed the standard network deviation, the Locarno reference
is replaced by the network average and the k coefficients are recomputed again.
Finally, for each day the station values are confronted with the daily network
average. Should the k-coefficient-transformed relative number differ more than
1σ from the network average, the exceeding station value is rejected and the daily
average is computed again. This down-selection of observations is repeated again
until a stable solution is found. The network daily average is then considered as
a final daily relative number Ri.

Additional sunspot numbers exist, differing slightly by methodology of their
calculation. For instance, the Boulder Sunspot Number is derived from the daily
Solar Region Summary produced by the US Air Force and National Oceanic and
Atmospheric Administration and utilised sunspot drawings obtained from the
Solar Optical Observing Network. The Boulder Sunspot Number was typically
about 60% larger than the International Sunspot Number until a large revision
of the Internation Sunspot Number in 2015. In the US, another sunspot num-
ber representative (Taylor, 1985) is provided by the American Association of
Variable Star Observers (AAVSO).

All these data sets differ by details and sometimes in magnitude, they can
be considered as independent description or representation of the solar reality.
In some of these relative numbers the issues were discovered. For instance,
systematically increasing deviations were observed between the International
Sunspot Number and the AAVSO number, which were accounted to the flaw in
the AAVSO methodology (Schaefer, 1997; Foster, 1997).

Even the International Sunspot Number was largely revised recently when
several issues were discovered and corrected in the historical records (Clette
et al., 2014) and even some non-solar trends in the relative numbers in recent
decades (Clette and Lefèvre, 2016). This led to a new revised sunspot number
(Clette and Lefèvre, 2016) issued by the World Data Center Sunspot Index and
Long-term Solar Observations (WDC-SILSO1), which replaced the International
Sunspot Number. For the modern-era the independent sunspot numbers now
agree quite well. The corrections to the historical records performed recently
on International Sunspot Number by Clette et al. (2014) were not accepted
by the entire community (see e.g. section 3.4 of Velasco Herrera et al., 2022).
The Sunspot Workshops community2 decided that since new data and new
techniques are retrieved and developed regularly, the sunspot number and other
series should be included in a modern versioning system, like all scientific series.

1https://www.sidc.be/silso/
2https://ssnworkshop.fandom.com/wiki/Home
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Various methods of combining many independent observations with unknown
uncertainties together to form one composite series suffer from various draw-
backs. For instance, the backbone method is prone to jumps or drifts of the
primary observer (see e.g. Lockwood et al., 2016). Weighted averages may also
lead to unobserved drifts. To avoid possible issues, it has been a common practice
not to consider all available observations, but to do reject some observations by
e.g. judging the stability of such observer (see e.g. the description of the WDC-
SILSO algorithm above). These criteria often follow some rule of thumb instead
of a rigorous assessment, such as e.g. a pre-selection based on the total number
of observations by a particular observer by AAVSO network (Taylor, 1985).

We propose a methodology of combining time series of several observers
together when using as many observations as possible, not excluding any of
them explicitly from the beginning and not rejecting any observations during the
process. The proposed methodology is developed to be suitable for the networks
of several observers, where the number of available daily observations is too
small to apply the WDC-SILSO method with outlier rejection. The methodology
targets the construction of the series of the hypothetical observer that optimally
combines the recordings of the real observers. The methodology is based on an
weighted-average approach, where the optimal combination is obtained by using
an iterative procedure. This approach allows us to suppress the effects of the
existing long-term drifts in individual series. This paper is a first step in the
development of a method that will be further tested when a more rich set of
observations will be available.

2. Observations

2.1. ČESLOPOL

Solar observations have a very long tradition in the countries appearing in the
area of the nowadays Czech Republic (Pavelková and Švanda, 2021). Already
from the beginning of the 17th century, drawings of the Sun were recorded by
Johann Zimmermann, who was the first known systematic solar observer in the
Czech countries. As of beginning of 19th century, several long-term systematic
observers appeared, such as Gregor Mendel or Artur Kraus. With the founda-
tion of the Czech Astronomical Society in 1917 solar observations became a
common task among amateur observers within the activities of its Solar Section.
In 1964 sunpots drawings were officially politically declared as a task of a na-
tional importance and in 1978 a FOTOSFEREX project was initiated (Křivský,
1978a,b).

The goal of the project was to have daily sunspot drawings available, sunspot
drawings became the core for the solar-activity predictions issued by the Astro-
nomical Institute of the Czechoslovak Academy of Sciences. One has to bear in
mind that those days the access to the world data was strongly limited due to
the communist regime and the only solution was a foundation of a local network.
FOTOSFEREX project relied heavily on local observations in Ondřejov, only in
the case of unfavourable observing conditions drawings from auxiliary stations
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(which included the amateurs) were considered. These drawings were sent by
telex service to Ondřejov.

With the advent of synoptic programs such as SoHO (Domingo, Fleck, and
Poland, 1995) or GONG (Harvey et al., 1996) the interest in using the solar
observations obtained by non-professionals decreased significantly and project
FOTOSFEREX was shut down in 1998. To promote solar observations in recent
years, project ČESLOPOL was initiated.

ČESLOPOL stands for ČESko-SLOvensko-POLská (Czech-Slovak-Polish) net-
work of solar observers working for the Solar Section of the Czech Astronomical
Society. At the moment, it includes 24 active observing stations. The network
collaborates closely with the Solar patrol of the Astronomical Institute of the
Czech Republic (ASU). Not only it gathers current observations of the Sun,
however, it targets to include the complete archive of FOTOSFEREX and the
archive of the national task and also to digitize and evaluate historical drawings.
The aim of the project ČESLOPOL is to integrate all the sunspot drawings
obtained in the historical Czech countries into one large database.

2.2. Data

Observers included in the ČESLOPOL network observe and draw the Sun in the
usual way, which is well known among amateur and professional astronomers,
usually using the projection technique. The drawings are evaluated also in a
standard way, their digitisation is done by a custom software Slunce3. This
is a GUI-based software with a convenient user interface that allows to simply
input semi-evaluated drawing of the photosphere and computes and stores the
data in a digitised form. It also allows to export the digitised observations in a
CSV (comma separated values) format to allow a communication with the outer
world.

The archive of digitised observations grows every day. Already it is large
enough to think about a calculation of an optimal representative relative sunspot
number in an automatic way. For the purpose of this study we had the following
subsets at disposal:

• A subset of observations by Ladislav Schmied covering years 1986–1993
from his private observatory in Kunžak. His total personal archive covers
years 1947–2012, however, most of these observations were not digitised
yet.

• Observations from Solar Patrol of the Astronomical Institute of the Czech
Academy of Sciences from Ondřejov observatory, covering years 1986–2020.
Over the years, two main observers were active there for a long term,
Frantǐsek Zloch and Tomáš Vaněk, complemented by several other observers
active for shorter times, including the authors of the study. We only add
that at the moment, observations from years 1949–2022 were digitised and
are in principle available.

3The program is available for download from https://www.asu.cas.cz/ sunwatch/cs/stranka/ke-
stazeni, however its interface is in the Czech language.
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Figure 1. Annual counts of individual observations available in the tested set (blue) together
with the count of non-zero observations (where R > 0).

• Observations from Prešov observatory, Slovakia, 1984–2009. Again, time
span is larger, not all the data were properly digitized.

• Recordings form the Observatory Prostějov in years 1991–2019.
• Scarce observations from Observatory Uherský Brod distributed over years

1988–2004.

In total, the data archive used in this study contains 16302 individual digitised
sunspot drawings performed by 64 individual observers operating in 5 stations.
Yearly counts of processed drawings including the count of non-zero observations
(that is where R > 0) are given in Fig. 1. The plot demonstrates that the count
of observations per year varies, it also may depict a long-term trend.

2.3. Data properties

Among other, three values from the records are most important for our study: the
number of recorded sunspot groups g, the total number of recorded individual
sunspots (umbrae) f and the relative sunspot number R, which depends on the
former two. Example plots of R from the archive are given in Fig. 2, where we
plot first a simple average (average of Rs of individual observations obtained on
the same day) of our archive and also two examples of observers working for
Solar patrol ASU. The figure shows that the input data are not continuous and
that the coverage by various observers may differ significantly. However, each
of these observers may cover some important part of the final series, so we do
not find it wise to exclude some of them from the beginning. We only point out
that case c) in Fig. 2 would very likely be excluded from algorithms constructing
the WDC-SILSO or AAVSO sunspot numbers due to the short coverage. The
inclusion of even such short series allows us to work with individual observers
rather than with observing stations, which is the practice e.g. by WDC-SILSO,
considering that even using the same equipment the personal biases may be
different for different human beings.

One of the key factors influencing the “closeness” of the drawing to the solar
reality are the observing conditions. In ČESLOPOL network a five-grade scale
of quality of observing conditions Q is established. It is not a rigorous scale, it
describes subjectively the level of details that are visible during the observation,
see Table 1. Already from the definitions of individual Q-values it is clear that
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Figure 2. Demonstration of the observations used for this study. a) – A simple daily mean
of all used observations. b) – An example history of an excellent long-term observer Frantǐsek
Zloch. c) – An example of an episodic observer (the corresponding author of this study served
at the Solar patrol during his Ph.D. only weekend services). The scales and ranges of all panels
are intentionally identical.

the number of recorded sunspots and possibly groups (especially when discussing
the single-pore groups of McIntosh classification Axx) strongly depends on the
value of Q. The smaller the value, the lesser number of sunspots will likely be
captured and drawn.

First, we studied the long-term evolution of the reported observing conditions
by taking the mean of all observations available for a particular day. In Fig. 3
one can see clear oscillations with a period of one year, which record the season-
ally changing observational conditions. On average, the observing conditions are
better in summer, where usually the drawing was recorded early in the morning
under decent observing conditions. The conditions gradually worsen towards
winter, when in the Czech Republic the weather is usually not favourable for
observations. Cloudy skies are often a reality during the days at the end and
beginning of the calendar year. The pattern of annual oscillations is quite regular
until say year 2009, in the years onwards the behaviour seems more chaotic. We
believe that this gradual change has to do with a decreasing number of available
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Table 1. Subjective scale of observation quality Q

Q Definition

1 only large spots are visible, granulation is not visible; poor observing conditions

2 also smaller spots are visible, granulation visible only occasionally

3 smaller spots are well visible, granulation visible; average observing conditions

4 granulation and pores visible well

5 all the details are observable; exceptional observing conditions

1984 1988 1992 1996 2000 2004 2008 2012 2016 2020
Date

1

2

3

4

5

M
ea

n 
Q

Figure 3. The values of Q smoothed by the running average over 13 days.

observations after 2010, which is evident from Fig. 1. The average Q suffers from
the small-number statistics here.

In Fig. 3 one also notices a gradual growth of average Q in years 1984–2014
followed by a decrease onwards. In years 1984–1994 the average Q oscillates
around the value of 3, which stands for average observing conditions, hence the
scale given in Table 1 corresponds to its definition. Between years 1998 and 2010
the mean Q is about 3.5 and in years 2012–2015 it even reaches the mean value
of almost 4. After 2018 the mean Q is about 3.5 again. It is not clear as to why
the observing conditions should slowly improve over the long period and then
start to worsen again.

If these trends in Q are real, they must introduce a gradual change in the
recorded values of g, f , and consequently R. We keep the usual definition of the
relative number R as obtained from the observations,

R = 10g + f, (1)

where g is the count of sunspot groups and f is the total number of sunspots.
When combining the dataset from various observers a personal coefficient k is
introduced, which is used traditionally to scale personal relative number R to
the “representative” one Ri:

Ri = kR = k(10g + f). (2)

The coefficient k includes personal/instrumental biases of the observer. Not only
it scales the observations of an observer to the reference data series, however,
in general it also scales one observer to another (the value naturally depends on
the selection of the two series to be compared). Hence the observations of two
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observers should be bound by a single scaling coefficient. We test this idea in two
ways: first we chose the observations performed by two observers at the same
days and compare not only the derived relative numbers R, but also the count of
sunspot groups g and the total count of sunspots f . Then we do the same with
a more limited sample for the same two observers, for observations obtained at
the same day and with the same declared observing conditions. Example plots
for one pair of tested observers it given in Fig. 4.

We find that the idea of the coefficient scaling is valid fairly well, however
the scaling coefficient seems to differ for number of sunspot groups and for the
total number of sunspots. In some cases we found that these coefficients may
differ even three times. We speculate that this may have to do with the effective
resolution of the used telescope, when it may be easier to identify the groups,
however to properly resolve individual spots within the groups may be more
difficult.

The scatter plots show a wider distribution along the hypothetical linear fit in
the case when different observing conditions were allowed for cross-comparison
than when the same observing conditions were requested. Also the correlation
coefficient is usually smaller in the former case.

This simple test shows that the observing conditions play a role in deriving
the personal scaling coefficient. This justifies the need for transformation of the
obtained observations to optimal (Q = 5) observing conditions, even though the
effect is small. To achieve the goal we propose to transform g and f to standard
conditions by simple linear transforms,

gred = g[1− cg(5−Q)], (3)

fred = f [1− cf (5−Q)]. (4)

The values of linear-fit coefficients cg and cf were obtained for each observer
independently. In order to have some meaningful estimate we considered only 8
observers from our set with the largest number of observations. For each of these
observers we considered linear relations similar to (3) and (4), where g and f
values represented those of the observer and gred and fred were taken from the
international sunspot number SILSO v2.0 for the same days4. We realise that
the definition of Q is somewhat fuzzy, hence we assumed an uncertainty of 0.5 for
each Q value in the least-squares linear fit. Furthermore, only non-zeros values
of g and f were considered in the fit.

The values of cg and cf obtained for 8 observers show a spread, however
they are all negative. This fact confirms the assumption that the reduction of
observations to better observing conditions must increase the g and f values, as if
the observer would see more spots and more groups under the better conditions.
The representative values of cg = −0.0348 and cf = −0.0780 with standard

4In principle, the coefficients might be derived with respect to any reasonable description of
g and f . Another option than SILSO sunspot number would be for instance a simple mean as
plotted in panel a) in Fig. 2. Another option would be to perform the process iteratively: 1. set
both cg and cf to zero, 2. perform the optimisation run as described by our methodology, use
the resulting series as the reference, 3. determine cg and cf with respect to this new reference
and 4. run a final optimisation.
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Figure 4. Example of direct comparison of two observers. Each cross corresponds to the value
obtained by the two observers at the same day (red) and at the same day and with the same
declared conditions (blue). The corresponding correlation coefficients are given in the plot
in the corresponding colours. Counts of groups, spots, and the reported relative number are
plotted in individual panels. In the displayed case, the studied overlap period was more than
20 years and included 286 “blue” and 1561 “red” days to be compared. Note that in the plots
in the upper row we added a small random jitter to the value to avoid point overlapping.
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deviations of 0.0046 and 0.0190 respectively were obtained from the weighted
average of the fits for the 8 observers, the weights reflected the number of
observations considered in the individual fits. The reduction to optimal observing
conditions is one of the novel points of our methodology.

The subjective or somewhat objective judgement or description of the observ-
ing conditions may be different for other sunspot-drawing collection projects.
We believe that our approach of transforming the relative numbers to fixed (e.g.
optimal) observing conditions may be modified accordingly.

Now that we have the reduction coefficients for (3) and (4), we are able
to transform observations of all observers to optimal observing conditions and
invoke them in the construction of the optimal series of relative sunspot number.
Finally we note that the values of gred and fred are kept with a floating precision
for further use and not rounded to integers as one could expect from their natural
interpretation.

3. Methodology

In this study we propose an iterative method of calculation of the representa-
tive relative sunspot number from a set of observations delivered by different
observers. Our methodology does not prefer any of these observers and does not
exclude any of them at the same time. It uses all observations and constructs
the representative series in an optimal way.

The premise is that all the observers observe the same Sun. However, due
to their personal/instrumental biases and local possibly varying observing con-
ditions their recordings may differ not only from the real Sun, but also when
records of different observers are mutually compared. The goal is to find the
optimal estimate of the real situation on the Sun which mimics the best the
recordings of individual observers and at the same time estimate the level of their
personal/instrumental biases and their changes over time. In fact, we construct a
time series of a hypothetical observer (who corresponds to the primary observer
in the backbone method) by taking all available observations into account not
preferring any of the real observers. The aim is to remove the dependence on the
reference observer (which is the core of the backbone method). This is important
because the personal/instrumental bias of the backbone may also change in time.

3.1. Conversion coefficients

The personal scaling coefficients are in fact a key in success of combination of
series obtained by many observers into one representative series. The coefficients
k may change slowly in time. We realised that the two quantities g and f are
way too different in nature that one scaling coefficient may not be enough to
cover all possible observing issues. Instead, we use two personal coefficient kg
and kf that take into account personal/instrumental biases in the conversion of
the observers’ records to the representative relative number R0:

R0 = 10kgg + kff. (5)
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Table 2. Example of testing of the recalculation of count of
groups g and count of spots f by recalculation from data series
by other observers.

Way kg

Schmied Ladislav → Ivan 0.375

Schmied Ladislav → Vaněk Tomáš → Ivan 0.296

Schmied Ladislav → Zloch Frantǐsek → Ivan 0.444

Schmied Ladislav → Černohousová → Ivan 0.501

average (Schmied Ladislav → 1 observer → Ivan) 0.416

average (Schmied Ladislav → 2 observers → Ivan) 0.449

Way kf

Schmied Ladislav → Ivan 0.800

Schmied Ladislav → Vaněk Tomáš → Ivan 0.600

Schmied Ladislav → Zloch Frantǐsek → Ivan 0.833

Schmied Ladislav → Černohousová → Ivan 1.000

average (Schmied Ladislav → 1 observer → Ivan) 0.811

average (Schmied Ladislav → 2 observers → Ivan) 0.849

Table 3. Similar to Tab. 2 only for a pair of observers who did not
have any common observing day because they alternated at Solar
patrol in Ondřejov.

Way kg

Vaněk Tomáš → Zloch Frantǐsek N/A

Vaněk Tomáš → Schmied Ladislav → Zloch Frantǐsek 1.389

Vaněk Tomáš → Černohousová → Zloch Frantǐsek 1.143

Vaněk Tomáš → Ivan → Zloch Frantǐsek 1.000

average (Vaněk Tomáš → 1 observer → Zloch Frantǐsek) 1.177

average (Vaněk Tomáš → 2 observers → Zloch Frantǐsek) 1.189

Way kf

Vaněk Tomáš → Zloch Frantǐsek N/A

Vaněk Tomáš → Schmied Ladislav → Zloch Frantǐsek 1.511

Vaněk Tomáš → Černohousová → Zloch Frantǐsek 1.080

Vaněk Tomáš → Ivan → Zloch Frantǐsek 1.005

average (Vaněk Tomáš → 1 observer → Zloch Frantǐsek) 1.199

average (Vaněk Tomáš → 2 observers → Zloch Frantǐsek) 1.231

Here again, both kg and kf are allowed to change in time.
We would like to combine all sets obtained by individual observers together

into the composite series (which we term the target series hereafter) to robustly
describe the real evolution of sunspot count on the Sun. The idea of the personal
coefficients may easily be tested on a set of observers which have at least some
overlapping days. This procedure requires a somewhat robust calculation of the
conversion coefficients. In the case of more observers in the sample it should in

SOLA: main.tex; 8 November 2022; 1:45; p. 12



Iterative construction of the optimal sunspot number series

principle be possible to compute the conversion coefficient of observers 1 and 2
by using an intermediate observer 3, when coefficients between observer 1 and 3
and observer 3 and 2 are known. This procedure is also termed “daisy-chaining”
by Lockwood et al. (2016).

Our tests showed that the idea holds only approximately. We used the whole
digitised archive for a selection of long-term observers to test the idea. Table 2
shows a typical example, where the conversion coefficient between observer
Ladislav Schmied and observer Ivan (kg = 0.375, kf = 0.800) are approximated
satisfactorily when using one observer in the middle (kg = 0.415, kf = 0.811 on
average) or even involving two-step observer chain in the middle (kg = 0.449,
kf = 0.849). Some other tests between other observers turned out better with
a better agreement, some worse. The tests usually showed that the values of kg
and kf may be significantly different, thus justifying our use of these separate
coefficients.

We have to stress out that in this test we computed the values of the con-
version coefficients for all the overlapping observations, hence we did not allow
for the change of the conversion coefficients in time. Also the number of mutual
pairs of observations suitable for the computation of the conversion coefficients
varied among observers, yet, we did not introduce any weighting. Given the
simplifications we consider the results of these tests not excellent but satisfactory.
Finally, we would like to point out that the methodology in principle allows to
determine the (virtual) conversion coefficients of two observers who did not have
any overlapping observations (see e.g. Table 3). In our database this was the case
for instance of observers alternating at Solar patrol at Ondřejov observatory,
where only one drawing per day was considered for the archive and hence these
observers never made drawings on the same day. Yet, the virtual conversion
coefficients when using one observer in the middle and two observers in the
middle provide with a very reasonable match.

3.2. The algorithm

Most of the relative sunspot number composites rely on a pilot station to ensure
the continuity. The pilot station then holds a special status in the observers
network. We would like to drop this need of the pilot station, because e.g. in
the network of amateur observers, it is difficult or even undesirable to define
a pilot station. We would also like to split observing teams at stations to set
of individuals. Unfortunately, there still is a need to calibrate one observer to
another by using the personal k coefficients. Unlike in the procedure used in
WDC-SILSO, we would like to separate the calculation of the personal conversion
coefficients from the construction of the network composite, at least so that these
two different steps do not use the same set of observations. At the same time we
target the usage of our code to networks with a few observers, maybe few dozens
of them, definitely not as many as are included in the WDC-SILSO network.

To compute a target sunspot number series by taking into account observa-
tions from a set of observers we propose an iterative methodology. It is schemat-
ically displayed in Fig. 5. The methodology is in principle divided in two alter-
nating major steps: the period of evaluation (of the personal coefficients) and a
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Figure 5. Schematic cartoon illustrating two consecutive steps of the method. Within the
window W the coefficients of all available observers (within that window) and the reference
series are evaluated. In the following window ∆W these coefficients are use to predict what
would the reference series be taking the observations of other observers into account.

subsequent period of prediction (of expected number of groups and sunspots).
In both of the periods we work with the target series g0 and f0, from which the
target relative number R0 is computed by using (1). The target series g0 and f0
is built piece-by-piece during the program run.

At start the target series does not exist yet, so for the evaluation of the
first set of personal coefficients an initial series is used. The sensitivity of the
procedure to selection of the initial series will be discussed in detail later in the
paper (Section 4.4). At this moment a natural choice would be some series, which
is sufficiently “solar-like”. The use of the observations of a long-term observer,
who is expected to be somewhat stable, should be sufficient. During the program
run, the segments of the target series provisionally filled by the initial series are
replaced by the properly computed values of the target.

In the period of evaluation, which is performed in a time window having a
length ofW , we follow the logic outlined by (5). For each observer α who provided
observations in the evaluation period, we compute her/his personal coefficients
kαg and kαf , which optimally scale his/her values to the target series. Each and
every observation j that yields a pair of values gαj and fαj is first reduced to
the optimal observing conditions by (3) and (4). To improve the stability of the
evaluation period, we consider only those observations where gαi > 1 and fαi > 5.

Then for each observation we compute the instant conversion coefficients

kαg,j = gαj,red/g0 and kαf,j = fαj,red/f0. (6)

The representative coefficients for the evaluation period having length W are
then computed as an arithmetic average over all determined instant coefficients,
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simply as:

kαg =
1

Mα

∑
j∈W

kαg,j and kαf =
1

Mα

∑
j∈W

kαf,j , (7)

where Mα is a total number of observations of a given observer within the
evaluation window fulfilling the thresholding condition given above. For each
observer we thus obtain representative (within the window of length W ) scaling
coefficients and we keep also number Mα which will serve as a measure of the
quality of determination of these coefficients.

Then we move forward to the prediction period. This occurs in a window of
length ∆W , which immediately follows the evaluation period in time. In this
period we “predict” the target series from the observations of other observers by
using their personal conversion coefficients, which were determined during the
previous period of evaluation.

In the prediction window having length of ∆W we progress on a day-by-day
basis. For each day D we identify a subset of observers with personal conversion
coefficients from the previous evaluation period that provide observations for
this particular day. By using an observer β5 we obtain a prediction based on
this observer, gβ0 and fβ0 :

gβ0 (D) = kβg g
β(D) and fβ0 (D) = kβf f

β(D). (8)

The composite prediction g0(D) and f0(D) is computed as a weighted average
over observers β, where the weights correspond to the number of observations
Mβ that served to determine the conversion coefficients in the evaluation period:

g0(D) =
∑
β

wβgβ0 (D) and f0(D) =
∑
β

wβfβ0 (D), (9)

with

wβ =
Mβ∑
βM

β
. (10)

As a final step before storing the composite prediction to target we round-off
g0 and f0 to integers and compute R0(D) = 10g0(D) + f0(D). The rounded
predicted composites for a set of days D within the window of length ∆W
are added to the target series after the evaluation window of length W in
the direction of time arrow. The days from the prediction window, when no
observations are available, remain unfilled.

Next we slide the evaluation window by ∆W forward in time and repeat the
process. This adds a new segment having a length of ∆W to the end of the

5Note that a set of identifiers β forms a subset of the set of identifiers α. In the prediction
period, some of the observers from the set of αs may be missing (they did not observe).
Similarly, there might be observations provided by other observer, for which the coefficients
from the previous evaluation period do not exist (she/he did not observe during the evaluation
period). Such an observer is not considered in forming the composite within the given prediction
window.
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target series. We slide again by ∆W until we reach the end of the series of
available observations. We refer to the progress following the arrow of time as
the “half-iteration”.

To complete the “iteration” we now switch the progress against the arrow
of time and start from the end of the series. All the values of the target series
are dropped except for the values located in the window of W days at the very
end of the series6. We then repeat the procedure described above against the
arrow of time by subsequent sliding by ∆W until we reach the beginning of the
series. At each step a new segment of the target series is built in front (in the
direction of the time arrow) of the target series. That is, a scheme displayed in
Fig. 5 is mirrored in the horizontal direction. The progress is stopped when the
beginning of the available observations is reached. The progression against the
arrow of time makes the target series denser because it allows to fill also days,
where the common observations were not available in the first half-iteration.

If necessary, the process may go iteratively forth and back again. In that case,
the process starts from the W -days long window of the target series from the
previous iteration, all the other values of the target series beyond this starting
window are dropped. The target series is then built again by segments from
the start without a direct connection to the previous realisation (except for the
starting W -days long window).

4. Testing the methodology

Our proposed methodology contains several non-trivial steps that need be jus-
tified by testing.

4.1. Validation of the principle

In the prediction step, the choice of the weighted average with the reduction of
observations to optimal observing conditions is not obvious. The choice is based
on testing of various predictive models.

The tests were performed separately again for 8 observers with the largest
number of observations in the data we have at disposal. The testing followed
the principles usual in machine-learning methods. For each observer considered
(termed the tested observer henceforth), we split his/her observations in two
equally populated halves in time. The first half mimicked the evaluation period
of the algorithm described in the previous section, whereas the second half
mimicked the prediction period and served as validation of the predictive model.

Following the reduced version of the methodology, we computed personal
conversion coefficients of other observers with respect to the tested observer in
the first half of his/her recordings. Then we used a set of predictive models to
predict what should the tested observer record in the second half. The existence
of the real tested observer’s observations during the second half allowed us to

6Note that this target series cropping also drops all the values from the initial series.
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Figure 6. In the upper panel one can see the observations of the tested observer (F. Zloch)
as compared with their predictions by using various tested models. In the bottom panel,
the corresponding relative residua are shown. Only one year 2003 from the validation period
spanning over 14 years is displayed.

compare the predictions with observations and to determine the success rates of
various predictive model.

In the evaluation, we considered a following set of predictive models:

Previous observation This is a simple model which does not involve other ob-
servers, however, it is used in testing of machine-learning methods. In the
validation period, we considered the previous available observation of the
tested observer as the prediction.

Long-term average Again, this is a simplified model that does not involve other
observers, but it again is used in testing the machine-learning methods. The
prediction is based on the average of observations of the tested observer over
previous 30 days.

Average For the given day, the observations of other available observers are
scaled by the appropriate coefficients kαg and kαf and a arithmetic mean
over all of these observers is considered. The personal conversion coefficients
were computed by using raw non-reduced observations, i.e. with cg = 0 and
cf = 0 in (3) and (4).

Weighted average This predictive model is similar to previous, only weighting
given by (10) is applied. The logic behind weighting says that when more
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Table 4. Example statistical evaluation of various considered predictive models, here summarised
for F. Zloch over the validation period of 14 years.

model RB(f) RMSE(f) RB(g) RMSE(g) RB(R) RMSE(R)

Previous observation 0.087 0.262 0.321 3.354 0.095 0.334

Long-term average 0.109 0.263 0.582 4.896 0.118 0.383

Average −0.098 0.062 −0.125 0.197 −0.114 0.073

Weighted average −0.102 0.061 −0.111 0.206 −0.110 0.075

Weighted average, −0.136 0.068 −0.206 0.200 −0.170 0.082

Q correction

model minδf maxδf minδg maxδg minδR maxδR

Previous observation −0.80 4.00 −0.923 32.000 −0.818 7.308

Long-term average −0.75 4.00 −0.947 41.000 −0.974 6.454

Average −0.75 1.00 −0.947 3.000 −0.814 1.290

Weighted average −0.75 1.00 −0.950 3.000 −0.814 1.290

Weighted average, −0.75 1.00 −0.950 3.000 −0.814 1.182

Q correction

pairs during the evaluation period are available, the derived coefficients are
expected to be more robust.

Weighted average with Q correction This predictive model is again an advance
of the previous. In the evaluation period both the observations of the tested
observer and the other observers are reduced to observing conditions with
Q = 5 by using (3) and (4).

To assess the success rate of various models we employ the visual comparison
(such as that displayed in Fig. 6 for observer Frantǐsek Zloch) and following four
statistical quantities. For each predictive model we evaluated the relative mean
bias RB

RB(t) =
1

N

N∑
i

(ti,m − ti,o)/ti,o, (11)

where t is the tested value t = {g, f,R}, N is the number of validated pairs, ti,m
is the model prediction, ti,o is the observation. Similarly we defined the relative
mean squared error

RMSE(t) =
1

N

N∑
i

[(ti,m − ti,o)/ti,o]
2
. (12)

As auxiliary criteria we also used maxima and minima of the relative residua,

minδt = min
i∈1..N

[(ti,m − ti,o)/ti,o] and (13)

maxδt = max
i∈1..N

[(ti,m − ti,o)/ti,o] . (14)
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The quantities corresponding to the example in Fig. 6 are given in Table 4.
Situation for the other 7 observers is very similar, hence the conclusions drawn
from the example of Frantǐsek Zloch are general.

We see that the model of previous observation and long-term average have
the largest residuals and from the tested predictive models perform the worst.
This could be expected for the long-term average model, because when using a
30-day average it cannot reproduce the day-to-day changes, however it is some-
what surprising that it does not perform significantly worse than the previous
observation model. The typical time scale for significant changes on the surface
of the Sun is a few days. On the other hand, it cannot be guaranteed that
the previous observation was always in the previous day, which would assure a
gradual change. We find both these models unsuitable.

The other models on the other hand seem to perform comparably. The only
statistical quantity where the model weighted average with Q correction performs
slightly better is the maximum of the relative residuum. It would seem that
inclusion of the reduction to the fixed observing conditions helps to suppress the
outliers.

Following these tests we gave the preference of the latest predictive model
over the others. Lastly, we would like to point out that in these tests we did not
allow for changes of the values of personal conversion coefficients in time. They
do evolve, however, and the neglection of this effect might increase the level of
deviations reproduced in the assessed statistical quantities.

4.2. Long-term trends in observers’ coefficients

Previous sections formed the principles of our methodology that allowed to
finalise the computer code (Švanda, 2022). It is written in Python when using
Numpy (Harris et al., 2020) and Pandas (McKinney et al., 2010) packages.
Especially the later one allowed us to write a flexible and universal code. What
is missing is to determine the optimal lengths of evaluation windowW , prediction
window ∆W and number of iterations.

To set the reasonable value of W we need to look at the evolution of the
conversion coefficients. We computed the personal conversion coefficients of each
observer in our dataset with respect to the reference series, which was con-
structed as a simple mean of the available observations and then averaged over
28 days (one solar rotation). The coefficients were computed in a sliding window
having W = 1000 days, which is the shortest reasonable given the scarcity of
our dataset. Shorter windows may be possible, however our dataset is not dense
enough so that in shorter windows the coefficients are not representative as only
a small number of pairs entering (6) is available.

Then we plotted the statistics of the conversion coefficients of all available
observers in Fig. 7. The bars are centered on the mean value of the conversion
coefficients of all observers within the considered window and extend 1σ to either
side. Interestingly enough, the coefficients as compared to the mean observations
seem to be correlated with the solar cycle, that is they on average seem to
increase during the maxima and decrease during the minima. It is especially
prominent in the case of kg.
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Figure 7. 1-σ ranges of the conversion coefficients of the observers with respect to the simple
mean over the studied period. Both group number (g, panel a) and sunspot count (f , panel
b) are plotted. Obtained with W = 1000 days.

We may only speculate what is the cause of this trend. During the maxima, the

observers are overwhelmed by an overall increased activity, so that some of them

easily miss for instance the Axx-type groups (in McIntosh (1990) classification

it represents an isolated pore). Also, possibly, the splitting of the complicated

sunspots nests into an appropriate number of magnetically coupled groups may

be difficult for visual observers. On the other hand, during the minima the

observers pay a special attention when scanning the solar disc and hence find

even smallest Axx-type groups.

The long-term evolution of the personal conversion coefficients sets limits on

an appropriate selection of length ofW , which should be longer than a solar cycle.

The values of W shorter than a cycle may introduce rising/declining trends in

the conversion coefficients that affect the overall determination of R0. Too short

W s thus lead to an inappropriate evaluation of the coefficients, where during the

consecutive windows shifted by ∆W one can see a positive feedback leading to

the incorrect solution.

The above described hypothesis based on the rules-of-thumb may be tested

by exploring a large (W,∆W ) space. We performed the execution of our code for

a set of W s and ∆W s and studied the effects of the choice on the two important

quantities.

First we introduced a misfit. The misfit described how well does the target

series represent the actual records of the individual observers. The misfit is then
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Figure 8. Maps of the auxiliary criteria helping to determine optimal values of W and ∆W .
On the left a map of misfits (15) are plotted, on the right we plot the slope of the linear trend
of the average personal scaling coefficient kf .

defined as

misfit =

 1

ND

∑
D

∑
β

(
R0(D)− [10kβg (D)gβ(D) + kβf (D)fβ(D)]

)2
∑
βMβ


1/2

. (15)

The misfit in fact evaluates the mean squared deviation of the target series
and k-coefficient transformed values of individual observers, evaluated for all
considered observers β and in all days D. The values of the misfit are displayed
in Fig. 8 in the left panel. The misfit is very small for small W s, then there
is a plateau between say W = 3000 days and W = 6000 days and for larger
values of W the misfit gradually increases. We interpret the figure in such a
way that for W < 3000 days the methodology fits the observations very well,
because it naturally allows for fast changes of the personal scaling coefficients.
For W > 6000 days the misfit increases because the personal coefficients vary on
shorter time scales. In other words, for W < 3000 days the method overfits the
data, whereas for W > 6000 days it underfits the data. The reasonable values
of W then naturally lie within the plateau between 3000 and 6000 days. The
dependence on ∆W is much weaker, it would seem that within the W -plateau
∆W < 3000 days does not affect the misfit significantly.

Another quantity we consider is the overall trend in the personal conversion
coefficients. For each day we compute the mean personal conversion coefficients
for observers who provided their records on that day and its standard deviation.
Then we use a linear fit through the mean personal coefficients with standard
deviations as measurement errors in time. This allows us to obtain a slope of
a general linear trend in the personal scaling coefficients. The fit is performed
independently for kg and kf , however, kf shows a stronger dependence on W
and ∆W and hence it is considered further. In general, one expects the slope of
the overall trend in the scaling coefficients to be around zero. Non-zero trends
indicate a systematic problem either with the target series (the solution) or
with a large portion of the observations. Naturally, non-linear, e.g. oscillating,
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Figure 9. Two different solutions of R by our methodology obtained with W = 1000 days and
W = 5000 days (the fiducial solution), both with ∆W = 100 days. Obviously, both solutions
are highly correlated, however the solution with a smaller W shows a clear envelope trend (the
overall amplitude of R is considerably smaller during cycle 23 and 24. This envelope trend is
seen in the lower panel, where the ratio of two solutions from the upper panel is plotted. This
behaviour is due to the trend in the conversion coefficients that were evaluated on the scales
shorter than the cycle-long oscillation.

trends cannot be excluded and such trends in principle could escape detection
by the linear fitting. Due to the two-step nature of our algorithm the systematic
deviations of the personal scaling coefficients multiply during the construction
of the target series and usually end up with the long-term systematic trend that
would be revealed by the linear fit.

The map of the kf trend is plotted in Fig. 8 in the right panel. According to
this the optimal values of W lie around 6000 days, where it is better to use a
rather small value of ∆W .

This may easily be demonstrated by comparing the results of runs differing
only by choice of W , as plotted in Fig. 9. There a solution with a short W =
1000 days differs significantly in the overall amplitude from the solution with
W = 5000 days, whereas the overall structure of the resulting target series are
very close (with a Pearson’s correlation coefficient close to unity). We tested that
the overall increasing or decreasing trend in the amplitude of the resulting R0

is indeed due to the trends in the personal conversion coefficients, as for such a
solution plots similar to that presented in Fig. 7 clearly show an almost steady
decrease or increase.

A choice of an appropriateW and ∆W is thus not straightforward. One should
pay attention to appropriately assess the properties of the resulting series and
evaluate critically the auxiliary criteria. Such a criterion is again a plot like that
in Fig. 7, where a gradually increasing or decreasing trend usually indicates an
inappropriate (too short) choice of W . Also coefficients of individual observers
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Figure 10. Same as Fig. 7, only these plots were obtained with W = 5000 days.

are to be studied. For instance, when a personal coefficient of an observer changes
by more than 50% over few years, this indicates a serious issue with the obser-
vations of this observer. Should this kind of rapid change be seen at several
observers, that on the other hand is an indication of an inappropriate selection
of W . In our case, we found a choice of W = 5000 days a good trade-off between
the suppression of the cycle-related changes and time resolution (compare Figs. 7
and 10, where cycle-related changes are suppressed).

Fig. 8 forces us to use a rather small value of ∆W for the selected W =
5000 days. There are, however, again other considerations. With a larger ∆W a
temporal resolution in determination of the coefficients is lost and one may then
miss e.g. an unexpected trend is someone’s coefficients. On the other hand, the
choice of ∆W too short pose a risk of not finding enough suitable observers in the
prediction period, which pose a risk of interruption in building the target series
by adding an empty segment of the length of ∆W to the end. This usually occurs
for short ∆W during the deep and long minimum, because only observations
where g > 0 and f > 5 are considered. Similar situation occurs when there is
a long gap in observations. In the case when these empty segments accumulate,
the building does not recover after passing the minimum or the gap and the code
run leads to a valid but shortened target series. In our case, we found an optimal
choice ∆W = 100 days.

4.3. Number of iterations

As we indicated in the description of the calculation algorithm, in principle, the
process is iterative. It is not clear from the beginning as to how many iterations
are necessary in order to obtain a stable solution or even if the iterative procedure
converges. With the code, it is easy to test it, however, many iterations may be
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Figure 11. Convergence of the data series after n iterations. a – The mean difference of the
resulting R obtained for the n-th and (n− 1)-th iteration. b – RMS of the differences.

lengthy. Using our set of about 16 000 individual observations one full iteration
takes a few minutes running single-thread on M1-based Macbook Air.

Statistical quantities defined by equations (11) and (12) provide us with suit-
able quantities that could be used to study the convergence of the iterations.
Therefore, using analogous formulae, we evaluate the mean difference and the
mean squared difference of the computed R0 between consecutive iterations.
Both quantities are plotted in Fig. 11 for the solution with W = 5000 days and
∆W = 100 days.

To properly interpret Fig. 11 we remind that the term “half-iteration” indi-
cates the progression through the data series respecting the time arrow, “full
iteration” includes also the backward propagation against the arrow of time.
Each point in the plot then gives the overall RB comparing the results from the
previous half/full iteration. By looking at panel a), one would perhaps naively
choose e.g. the point at 3 iterations, where the RB seems considerably smaller
than for 2 iterations. However, this means that the 3rd iteration is very similar
to the 2nd iteration and hence the 3rd iteration does not bring forward any
significant improvement. In the panel b) it is even more evident that 2 iterations
are sufficient.

Putting all the above given arguments together, our fiducial solution respect-
ing optimally the properties of the archive of observations we are processing
has thus the following choice of free parameters: The width of the evaluation
window W = 5000 days, the width of the prediction window ∆W = 100 days,
2 full iterations.

4.4. Sensitivity to the choice of the initial series

Our methodology is iterative, therefore there must exist an initial guess of the
reference series, which is used for the evaluation of the weights in the first
evaluation windows. A successful methodology should be rather robust with
respect to the utilisation of the initial series.

In the paragraphs above, we pointed out that a reasonable choice of the
initial series is anything “solar-like”, that is, it should somewhat resemble the
expected solution in term of the general trends. One obvious choice is to use
the observations of one respected observer, experienced enough and with a large
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Table 5. Mutual correlation coefficients and multi-
plicative coefficients of final sunspot number when
using different initial observations.

Correlation coefficients

Zloch Schmied Ivan average

Zloch 1.0000 0.9987 0.9998 0.9998

Schmied 0.9987 1.0000 0.9983 0.9987

Ivan 0.9998 0.9983 1.0000 0.9999

average 0.9998 0.9987 0.9999 1.0000

Slopes

Zloch Schmied Ivan average

Zloch 1.0000 0.7637 1.0390 0.9726

Schmied 1.3078 1.0000 1.3586 1.2721

Ivan 0.9623 0.7349 1.0000 0.9361

average 1.0280 0.7851 1.0682 1.0000

set of observations available. From the methodology it follows that this observer
should provide us with observations that span over a period at least W long,
otherwise it will not be possible to compute the personal conversion coefficients
of the other observers. Professional observers or devoted amateurs usually fulfill
this condition. In our case we chose the observers working for the Solar patrol
at Ondřejov observatory, namely Frantǐsek Zloch. From the Czech amateurs we
certainly must mention Ladislav Schmied, who in his private observatory drew
the Sun for 66 years having altogether more then 12 500 drawings. Unfortunately,
not all drawings by Ladislav Schmied were digitised yet.

Another choice would be some sort of the aggregated series. A choice which
offers itself automatically is a simple arithmetic average of all observations in
the series. Such a choice ensures that the general solar trends (such as the 11-
year cycle) will be respected and also it ensures that for each considered day
there will be at least one observer for which one may determine the conversion
coefficients.

Our tests show that the results only weakly depend on the choice of the
initial series in terms of the evolution in time. This is demonstrated in Table 5.
Here we evaluated two statistical quantities comparing the results of the fiducial
runs with different initial series. First we compute the Pearson’s correlation
coefficient, second we computed the quantity we refer to as slope. The slope
corresponds to the optimal multiplicative factor between two series in the least-
squares sense. It basically gives the slope of the linear fit without a constant
term. Table 5 clearly shows that the resulting series does not depend on the
initial series in terms of the evolution in time, that is, the correlation coefficients
are close to unity. However, due to the different conversion coefficient of the
initial series the overall amplitude may differ. That is, the resulting R0 series
computed from different initial series are identical except for the multiplicative
scaling.
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Figure 12. Direct comparison of the sunspot number resulting from our code with the initial
series coming from F. Zloch and L. Schmied. In the upper panel, the ratio of the solutions is
plotted with respect of time. In the bottom-left panel the corresponding relative numbers are
plotted against each other, in the bottom-right panel one can see the histogram of the ratios
plotted in the upper panel.

The scaling is indeed multiplicative only, as shown e.g. in Fig. 12, where the
solutions starting from observer F. Zloch is directly compared with the solution
starting from L. Schmied (note that this pair of observers has a large scaling
factor – cf. Table 5). The ratios of both solutions vary around the slope value
(which is 0.7637 in this case), the histogram indicates the relative residua being
single-modal and its shape is what one expects from the multiplicative model.
The mutual scatter plot also does not indicate any pathology.

The multiplicative scaling found for various initial series is a natural property
of our methodology. As we pointed out, the methodology aims to construct a
target series of observations by a hypothetical stable observer who combined the
best of all. The choice of the initial series thus influences the overall magnitude
of the target series, it influences the “personal coefficients” of the hypothetical
observer. Real observers are known to have different scaling coefficients and our
is not an exception. Besides, various definitions of relative sunspot numbers used
in the world have or had overall different magnitudes, as already discussed in
the Introduction.

The resulting target series R0 consequently differs from the initial one consid-
erably. This difference is plotted for instance in Fig. 13, upper panel, where we
took Frantǐsek Zloch as an initial. One can see that even in the first evaluation
windows between 1986–1999 the fiducial solution differs from the initial series.
Due to the use of the observations of other observers, the target series is longer –
it starts in the years before the initial series was available and naturally extends
beyond the end of the initial series.
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Figure 13. Comparisons of the sunspot number from our fiducial solution with the initial
series coming from F. Zloch (upper panel) and an arbitrary flat curve (bottom panel).

As a last note we would like to add that the sensitivity to the initial series is
so low, that even with a flat initial series (that is a series where both g and f
were constant) converged to the solution which had the same character as the
others (see Fig. 13, bottom panel). Note a considerably different amplitude as
compared to the solution initiating from F. Zloch.

5. Concluding remarks

In this paper we describe a new iterative methodology that allows to compute a
target series of sunspot numbers. It does not rely on a single reference observer,
it in fact uses as much information as possible. The methodology is very robust
and except for the overall amplitude, it provides us with essentially the same
solution regardless the initial series.

Our methodology consists of modification of the current WDC-SILSO method-
ology. The main differences are the following:

• We do not use a pilot station. Our resulting composite does not prefer
any of the observers and constructs a series of the “hypothetical” stable
observer. As a consequence, the overall amplitude is not constrained. When
comparing with other concurrent series, it should be normalised, using a
methodology similar to normalisation of one observer to other.

• We split the determination of the personal scaling coefficients and the
computation of the composite. Those two steps use the independent set
of observations.
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Figure 14. Comparions of the sunspot number from our fiducial solution with SILSO v2.0
sunspot number.
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Figure 15. Similar plot to Fig. 12 directly comparing the values of our fiducial solution to
SILSO v2.0 sunspot number.

• We use all the available observations and do not reject any of them on
the statistical basis. This makes our methodology suitable for smaller net-
works with a rather scarce coverage. In a sense, it constitutes a compromise
between the backbone method and the modern statistically driven methods.

• We use two personal scaling coefficients of the observers, one for the number
of groups and one for the number of sunspots. These coefficients are allowed
to slowly change in time independently.

• Our methodology is iterative and builds the target composite step-by-step.
It always uses all the input data and naturally allows an inclusion of the
newly discovered archival observations, should any appear later.

The question may be how does our computed relative number compare to the
“official” international products. This can easily be demonstrated by plots and
statistical properties. In Fig. 14 we show a comparison of our fiducial solution
with F. Zloch as initial and the sunspot number SILSO v2.0 (Clette et al., 2014).
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Figure 16. Comparisons of the group number from our fiducial solution with revised group
number. (Note that revised group number is only available until 2010, the correlation coefficient
is computed for the overlapping period.)
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Figure 17. Similar plot to Fig. 12 directly comparing the values of our fiducial solution group
number to Vaquero et al. (2016)’s group number.

It can be seen that the overall agreement is very good, the Pearson’s correlation
coefficients reaches ρ = 0.99. It is clear from the plot that our solution has a
smaller overall magnitude, the scaling coefficient is approximately 0.863. The
ratio between the fiducial R and SILSO v2.0 sunspot number is quite stable
with time except for a few outliers in the minimum phase, the histogram of
ratios shows the unimodality (Fig. 15).

SILSO sunspot number is not the only one available in the community. A
solar index of a slightly different nature is the group number GN, introduced by
Hoyt and Schatten (1998). We compare this index recalculated by Vaquero et al.
(2016) with a number of groups, which is as a by-product computed also by our
method. Fig. 16 shows an excellent agreement between the two series, again, the
ratio is stable over the period for available for comparison (Fig. 17).

The code returns not only the resulting reference g0, f0 and R0, however it
naturally keeps and returns the personal conversion coefficients of each observer.
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Figure 18. Example evolutions of conversion coefficients for selected long-term observers.

It therefore allows to study the performance of individual observers ex-post and
allows to control possible overall trends that would invalidate the solution.

In Fig. 18 we plot personal conversion coefficients of two observers used in
our study. They both depict a gradual change. We need to note here that the
apparently smooth curve is over-sampled due to the selection of our fiducial
solution (W = 5000 days, ∆W = 100 days). The effective time resolution
is W/2 = 2500 days, which is about 6.8 years. Either way, a decrease of kf
after year about 2000 is evident in the left panel. It would mean that F. Zloch
suddenly systematically saw considerably larger number of sunspots, whereas
his kg remained more-or-less the same, that is, he at the same time registered a
constant number of sunspot groups.

In fact, it is possible to explain this gradual change in kf . It has become a
practice at Solar patrol at the end of 1990s to use an ex-post camera aid to
cross-check the drawing obtained by projection using a small 63-mm telescope
with the direct observations by 20-cm telescope in a large magnification. This
hypothesis is confirmed by the fact that the personal conversion coefficients of
the other Solar patrol observers active at the same time showed similar trends.
This change in observing methodology was not written in the logs, either way
it became a common practice that was used until this generation of observers
retired. The new observers at Solar patron do not follow this practice and rely
only on projection by the 63-mm telescope.

The other displayed trends of the observer Božena Černohousová from Prostějov
observatory indicated constantly growing personal conversion coefficients, kf
with a larger growth rate than kg, which very likely indicates a gradually wors-
ening vision.

Lastly, we would like to point out that since the reference values of g0 and
f0 are obtained by means of sample averaging, it is possible to compute for-
mal statistical uncertainties of those two variables. By following the principle
of propagation of uncertainties (Wikipedia contributors, 2022) we hence ob-
tain statistical uncertainty of R0 as well. For our fiducial solution we plot the
uncertainties of R0 in Fig. 19.
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